Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Sci Technol ; 55(7): 4174-4182, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1392752

ABSTRACT

Control technologies to inactivate airborne viruses effectively are needed during the ongoing SARS-CoV-2 pandemic, and to guard against airborne transmitted diseases. We demonstrate that sealed UV-C flow reactors operating with fluences near 253 ± 1 nm of 13.9-49.6 mJ cm-2 efficiently inactivate coronaviruses in an aerosol. For measurements, porcine respiratory coronavirus (PRCV) was nebulized in a custom-built, 3.86 m wind tunnel housed in a biosafety level class II facility. The single pass log10 reduction of active coronavirus was in excess of 2.2 at a flow rate of 2439 L min-1 (13.9 mJ cm-2) and in excess of 3.7 (99.98% removal efficiency) at 684 L min-1 (49.6 mJ cm-2). Because virus titers resulting from sampling downstream of the UV-C reactor were below the limit of detection, the true log reduction is likely even higher than measured. Comparison of virus titration results to reverse transcriptase quantitative PCR and measurement of fluorescein concentrations (doped into the nebulized aerosol) reveals that the reduction in viable PRCV is primarily due to UV-C based inactivation, as opposed to physical collection of virus. The results confirm that UV-C flow reactors can efficiently inactivate coronaviruses through incorporation into HVAC ducts or recirculating air purifiers.


Subject(s)
COVID-19 , Coronavirus , Aerosols , Humans , SARS-CoV-2 , Ultraviolet Rays
2.
Indoor Air ; 31(6): 2058-2069, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1222522

ABSTRACT

Recirculating air purification technologies are employed as potential means of reducing exposure to aerosol particles and airborne viruses. Toward improved testing of recirculating air purification units, we developed and applied a medium-scale single-pass wind tunnel test to examine the size-dependent collection of particles and the collection and inactivation of viable bovine coronavirus (BCoV, a betacoronavirus), porcine respiratory coronavirus (PRCV, an alphacoronavirus), and influenza A virus (IAV), by a commercial air purification unit. The tested unit, the Molekule Air Mini, incorporates a MERV 16 filter as well as a photoelectrochemical oxidating layer. It was found to have a collection efficiency above 95.8% for all tested particle diameters and flow rates, with collection efficiencies above 99% for supermicrometer particles with the minimum collection efficiency for particles smaller than 100 nm. For all three tested viruses, the physical tracer-based log reduction was near 2.0 (99% removal). Conversely, the viable virus log reductions were found to be near 4.0 for IAV, 3.0 for BCoV, and 2.5 for PRCV, suggesting additional inactivation in a virus family- and genus-specific manner. In total, this work describes a suite of test methods which can be used to rigorously evaluate the efficacy of recirculating air purification technologies.


Subject(s)
Air Filters , Air Pollution, Indoor , Coronavirus , Orthomyxoviridae/isolation & purification , Aerosols , Air Microbiology , Air Pollution, Indoor/analysis , Coronavirus/isolation & purification , Filtration/instrumentation , Oxidative Stress , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL